

Journal of Alloys and Compounds 323-324 (2001) 632-635

www.elsevier.com/locate/jallcom

Effect of pressure on transport properties of mixed-valence compound YbAl₃

S. Ohara*, G.F. Chen, I. Sakamoto

Department of Electrical and Computer Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan

Abstract

The pressure effects on the electrical resistivity and the Hall effect have been measured for YbAl₃ and LuAl₃. LuAl₃ is a normal metal and has negative pressure coefficient of resistivity -5×10^{-3} kbar⁻¹ at room temperature, which is explained by a phonon stiffening effect. In the mixed-valence compound YbAl₃, the magnetic contribution to the resistivity is increased by pressure. The Grüneisen parameter of the Kondo temperature $\Omega_{\rm K} = -\partial \ln T_{\rm K}/\partial \ln V$ is estimated -7 for YbAl₃ from the coefficient of the quadratic temperature dependence of the resistivity at low temperatures. The decrease of $T_{\rm K}$ with pressure indicates that the density of conduction electron states at the Fermi energy and/or the exchange of 4f and conduction electrons are suppressed by pressure in YbAl₃. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Transport property; Pressure effect; Kondo temperature; YbAl₃; LuAl₃

1. Introduction

For understanding physical properties of Ce- and Ybbased mixed-valence and heavy fermion compounds, pressure is a powerful tool because it strongly affects the Kondo temperature $T_{\rm K}$. Under high pressure, the valence of rare-earth ions generally increases, leading to the pressure-induced demagnetization and magnetization of Ce ion and Yb ion, respectively. There have been a lot of high pressure studies for valence instability in the Ce-intermetallic compounds [1]. However relatively few studies of Yb-compounds have been carried out, because of difficulties of the single crystal growth. Furthermore, only a few Yb-based compounds have been known as mixed-valence and heavy fermion compounds, because in most Yb-compounds, ytterbium exhibits a non-magnetic divalent state Yb²⁺ (4f¹⁴).

Recently, we have grown a high quality single crystal of YbAl₃ with a residual resistivity ratio of about 50. YbAl₃ has the simple cubic Cu₃Au-type structure and well known as a mixed-valence compound. Although a large number of studies have been made on YbAl₃ at ambient pressure [2], little is known about pressure effect on the electronic properties. In this paper we report the pressure effect on

the electrical resistivity and the Hall effect for YbAl₃. We also report electronic properties of the non-magnetic material LuAl₃ for comparison. At ambient pressure, the electronic-specific heat coefficient of YbAl₃ is 45 mJ mol⁻¹ K⁻² [3]. The magnetic susceptibility shows maximum near 120 K and follows a Curie–Weiss law for T>250 K with a Curie–Weiss temperature of -225 K and an effective moment of 4.2 $\mu_{\rm B}$ [4], the value quite close to that for free Yb³⁺. Since these physical properties are very similar to those of the Kondo compound CeSn₃, YbAl₃ is suitable to study as a counterpart of CeSn₃ with respect to 4f-electron and 4f-hole symmetry. Both of YbAl₃ and CeSn₃ are high- $T_{\rm K}$ compounds and do not order magnetically.

2. Experimental

Single crystals of YbAl₃ and LuAl₃ were grown from metallic fluxes [5] using the high purity Yb (3N), Lu(3N) and Al(6N). The starting materials, 7at% Yb in 93at% Al for YbAl₃ and 4at%Lu in 96at% Al for LuAl₃, were placed in an alumina crucible and sealed into a quartz ampoule under high vacuum. The ampoule was heated to 800°C and cooled down slowly to 600°C for 2–4 days. An excess of Al surrounding the grown crystals was eaten away by NaOH solution, which does not attack the crystals. The crystal shapes were cube with each edge ~1 mm and plate

^{*}Corresponding author. Tel.: +81-52-735-5156; fax: +81-52-735-5158.

E-mail address: ohara@ks.kyy.nitech.ac.jp (S. Ohara).

typically $3 \times 3 \times 0.3 \text{ mm}^3$. The crystal structures and lattice constants of these crystals examined by X-ray powder diffraction agree with the reported data, Cu₃Au-type cubic structure, a=4.202 and 4.189 Å for YbAl₃ and LuAl₃, respectively [3,6].

Measurements of the electrical resistivity and the Hall effect were made in a clamp-type piston (WC) and cylinder (Cu–Be) pressure cell with an oil (Daphne 7373) as pressure transmitting fluid. Pressure dependence of the resistivity up to 17 kbar was measured by an usual DC-probe method at room temperature, and the temperature dependence was obtained at a fixed pressure over the temperature range 1.8–300 K. The Hall effect measurements were carried out at 1.3 K using a superconducting magnet with a magnetic field up to 9 T. The de Haas–van Alphen effect under high pressure was also measured for LuAl₃.

3. Results and discussion

Fig. 1 shows the pressure dependence of the electrical resistivity for YbAl₃ and LuAl₃ at room temperature. With increasing hydrostatic pressure, the resistivity of LuAl₃ decreases linearly, whereas the resistivity of YbAl₃ gradually increases except for the low pressure region (P<3 kbar). The pressure coefficient of resistivity $\partial \ln \rho / \partial P$ are -5×10^{-3} kbar⁻¹ for LuAl₃ and $+1 \times 10^{-3}$ kbar⁻¹ for

Fig. 1. Pressure dependence of the electrical resistivities at room temperature for $YbAl_3$ and $LuAl_3$.

 $YbAl_3$ at high pressure region. The negative pressure coefficient of resistivity for LuAl₃ can be explained by a phonon stiffening effect, as described below. The volume dependence of electrical resistivity for isotropic normal metals such as LuAl₃, is generally written as [7]

$$\frac{\partial \ln \rho}{\partial \ln V} = \frac{\partial \ln A_{\rm F}}{\partial \ln V} - \frac{\partial \ln \theta}{\partial \ln V} \left(1 + \frac{\partial \ln \rho}{\partial \ln T} \right) \tag{1}$$

where V is the volume, θ the Debye temperature, and A_F a coefficient that includes all the pressure-dependent quantities coming from the geometry of the Fermi surface. In the high temperature region with phonon scattering, $\rho \propto T$, Eq. (1) is reduced to

$$\frac{1}{\rho}\frac{\partial\rho}{\partial P} = \frac{1}{A_{\rm F}}\frac{\partial A_{\rm F}}{\partial P} - 2\gamma\kappa \tag{2}$$

using the Grüneisen constant $\gamma = -\partial \ln \theta / \partial \ln V$ and compressibility $\kappa = -\partial \ln V / \partial P$. From the de Haas–van Alphen (dHvA) effect measurements under high pressure for LuAl₂, the pressure coefficients of Fermi surface volume were obtained that $+0.9 \times 10^{-3}$ and 1.0×10^{-3} kbar⁻¹ for the largest (21% of the first Brillouin zone) and the second-largest (7.4%) spherical Fermi surfaces of LuAl₃, respectively [8]. Since these pressure coefficients are the same order of magnitude, these expands of Fermi surfaces could be explained by expanding of the reciprocal space with compression of the real space, assuming the compressibility $\kappa \sim 1 \times 10^{-3}$ kbar⁻¹. Using this compressibility value and the usual Grüneisen constant $\gamma = 2-3$ for normal metal, the phonon stiffening term $-2\gamma\kappa$ is calculated to be of $-4-6 \times 10^{-3}$ kbar⁻¹, in good agreement with the observed pressure coefficient -5×10^{-3} kbar⁻¹ for LuAl₃. These results indicate that the phonon stiffening effect is the main contribution to the decrease of the resistivity with pressure for LuAl₃. In YbAl₃, the electrical resistivity ρ is described as $\rho = \rho_0 + \rho_{\rm ph}(T) + \rho_{\rm mag}(T)$, where ρ_0 is the residual resistivity, $\rho_{\rm ph}(T)$ the phonon term and $\rho_{\rm mag}(T)$ represents the 4f magnetic contribution. Since the decrease of phonon term is also the case for YbAl₃ and contribution of ρ_0 is negligibly small at room temperature, the positive pressure coefficient of YbAl₃ may be ascribed to the increase of 4f magnetic contribution.

The Kondo temperature is proportional to $\exp\{-1/D(E_F) J_{cf}\}$, where $D(E_F)$ is the density of conduction electron states at the Fermi energy and J_{cf} is the magnetic exchange coupling strength between 4f local moment and conduction electrons [1]. Thus obtaining the changes in T_K is a good estimate of the shift of the 4f magnetic contribution for electronic properties. Pressure effect on T_K can be obtained from a pressure dependence of a coefficient A of the quadratic temperature region, because the coefficient A is inversely proportional to T_K^2 [1]. Fig. 2 shows the temperature dependence of the resistivity ρ at several pressures up to 15 kbar for YbAl₃. For comparison,

Fig. 2. Temperature dependence of the electrical resistivities for YbAl₃ at ambient pressure (0), 5, 10 and 15 kbar. The resistivities of $LuAl_3$ at ambient pressure and 10 kbar are also illustrated.

the results of LuAl₃ at ambient pressure and 10 kbar were also illustrated. The resistivity of LuAl₃ shows normal metallic behaviors and represents the phonon contribution $\rho_{\rm ph}(T)$ to resistivity of YbAl₃. As can be seen, the magnetic contribution $\rho_{mag}(T)$ in YbAl₃ is very large as compared to the $\rho_{\rm ph}(T)$. In order to obtain the low temperature variation of the magnetic resistivity $\rho_{mag}(T)$ of YbAl₃, we subtract the resistivity of LuAl₃ as the phonon term from the resistivity of YbAl₃. In low temperature region, the phonon contribution to the total resistivity of YbAl₃ can be considered pressure independent. In Fig. 3, the residual and magnetic part to the total resistivity are plotted as a function of T^2 up to 14 K for YbAl₃. In all pressure, the T^2 -dependence is clearly observed as shown by straight line in Fig. 3. In Fig. 4a,b, we show the pressure change of the residual resistivity ρ_0 and the coefficient A for YbAl₃. With increasing pressure, both of ρ_0 and A increase, in contrast to the Ce-compounds [1]. To clear the pressure effect on the Kondo temperature $T_{\rm K}$, we also plot $A^{-1/2}$ versus pressure in Fig. 4c. With increasing pressure the $A^{-1/2}$ decreases indicating that the Kondo temperature decreases with pressure in YbAl₃. The decrease of $T_{\rm K}$ under pressure indicates that the density of state $D(E_F)$ and/or the Kondo coupling J_{cf} are suppressed by pressure in YbAl₃. We have estimated the Grüneisen parameter of Kondo temperature $\Omega_{\rm K} = -\partial \ln T_{\rm K} / \partial \ln V =$

Fig. 3. Low temperature variation of $\rho_0 + \rho_{mag}(T)$ as a function of T^2 for YbAl₃ at ambient pressure (0), 5, 10 and 15 kbar.

Fig. 4. Pressure dependence of (a) the residual resistivity ρ_0 , (b) the coefficient of the quadratic temperature dependence of the electrical resistivity *A* and (c) the $A^{-1/2}$ of YbAl₃.

Fig. 5. Magnetic field dependence of the Hall resistivities for $YbAl_3$ and $LuAl_3$ at ambient pressure (0) and 10 kbar.

 $\kappa^{-1} \partial \ln A^{-1/2} / \partial P = -7$, using $\kappa = 1 \times 10^{-3}$ kbar⁻¹ and $\partial \ln A^{-1/2} / \partial P = -7 \times 10^{-3}$ kbar⁻¹. Note that the Kondo Grüneisen parameter for CeSn₃ is +7 [1], which is the same magnitude but opposite sign for that of YbAl₃. These magnitudes of $\Omega_{\rm K}$ are smaller than these of typical heavy fermion compounds such as CeAl₃ ($\Omega_{\rm K} = +383$, $T_{\rm K} = 2.9$ K), CeRu₂Si₂ (+177, 11.3 K), YbCu₂Si₂ (-48, 226 K) [1,9].

Fig. 5 shows the Hall resistivity of YbAl₃ and LuAl₃ at ambient pressure and 10 kbar as a function of the magnetic field up to 9 T at 1.3 K. For each compounds, the Hall coefficient $R_{\rm H}$ are negative and the absolute value of $R_{\rm H}$ decreases by 7% with applying pressure from 1 bar to 10

kbar. Between YbAl₃ and LuAl₃, there are no large difference of pressure effect on the Hall coefficient $R_{\rm H}$ at 1.3 K. It indicates that the anomalous Hall effect in YbAl₃ is weak at low temperature. However, such a large decrease of $|R_{\rm H}|$ could not be explained by a simple lattice compression with compressibility $\kappa = 1 \times 10^{-3}$ kbar⁻¹. More detailed studies are required for further understanding of the pressure effects on Hall effects of these materials.

In summary, we have found that the Kondo temperature $T_{\rm K}$ of YbAl₃ is decreased by pressure. We have estimated Kondo Grüneisen parameter $\Omega_{\rm K} = -7$. This $\Omega_{\rm K}$ is same magnitude but opposite sign to that for CeSn₃. The decrease of $T_{\rm K}$ with pressure indicates that the density of conduction electron states at the Fermi energy $D({\rm E_F})$ and/or the magnetic exchange coupling strength between 4f local moment and conduction electrons $J_{\rm cf}$ are suppressed by pressure in YbAl₃.

Acknowledgements

We thank Y. Shomi for his experimental assistant through the present work. Part of this work was supported from a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan.

References

- J.D. Thompson, J.M. Lawrence, in: Handbook on the Physics and Chemistry of Rare Earths, Vol. 19, Elsevier, Amsterdam, 1994, p. 383.
- [2] J.C.P. Klaasse, F.R. de Boer, P.F. de Châtel, Physica 106B (1981) 178.
- [3] E.E. Havinga, K.H.J. Buschow, H.J. van Daal, Solid State Commun. 13 (1973) 621.
- [4] J.M. Lawrence, P.S. Riseborough, R.D. Parks, Rep. Prog. Phys. 44 (1981) 1.
- [5] P.C. Canfield, Z. Fisk, Phil. Mag. B 65 (1992) 1117.
- [6] A. Palenzona, J. Less-Common Metals 29 (1972) 289.
- [7] R.S. Bradley (Ed.), High Pressure Physics and Chemistry, Academic Press, London and New York, 1963, Chapter 5.
- [8] I. Sakamoto, G.F. Chen, S. Ohara, H. Harima, S. Maruno, J. Alloys Comp. 323–324 (2001) 623.
- [9] A.L. Cornelious, J.S. Schilling, D. Mandrus, J.D. Thompson, Phys. Rev. B 52 (1995) 15699.